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Abstract Economic dispatch and demand side
management are two of the most important tools
for efficient energy management in the grid. It
is a casual observation that both these processes
are intertwined and thus complement each other.
Strategies aiming to optimize economic dispatch
have implications for demand side management
techniques and vice versa. In this paper, we
present a genetic algorithm-based solution which
combines economic dispatch and demand side
management for residential loads in a micro-grid.
Our system collects preferences of demand data
from consumers and costs of energy of various
sources. It then finds the optimal demand schedul-
ing and energy generation mix for the given time
window. Our evaluations show that the given ap-
proach can effectively reduce operating costs in a
single- and multiple-facility micro-grids for both
suppliers and consumers alike.
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Nomenclature

VC Cut-in speed of wind generator
VR Rated speed of wind generator
VF Cutoff speed of wind generator
C The set of consumers under the micro-grid
S The set of currently available energy

suppliers to the micro-grid
μx Total energy demand by consumer x
μx,h Total energy demanded by consumer x at

hour h
αy,h Total energy available from supplier y at

hour h
λy,h Price of energy from supplier y at hour h
βx,y,h Total energy allocated to consumer x from

supplier y at hour h

Introduction

Economic dispatch and demand side management
(DSM) are two of the most important tools for
efficient energy management in the grid. Whereas
economic dispatch is the task of finding the right
and optimal mix of energy for the given demand,
demand side management aims at managing end
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user demand to reduce cost. There are various
ways to achieve this goal, the most common way
is by shifting movable loads to off-peak time or
times of lower cost. The goal is to reduce en-
ergy cost by balancing energy resources against
demand.

It is a casual observation that both these
processes are interlinked. Economic dispatch tries
to reduce cost according to available demand and
DSM tries to manage demand to reduce cost. It
stands to reason that if both tasks are consid-
ered together, where DSM and economic dispatch
planning include their interdependent constraints,
a better solution may emerge.

Specifically, in renewable solution imple-
mented on a small scale by the consumers, this
aspect becomes more evident. In these systems,
typically, the excess low-cost energy from renew-
able sources is either stored in battery systems or
sold back to energy retailers up the grid. These ap-
proaches miss the opportunity to take advantage
of the localized aspects of micro-grids and incur
significant costs associated with often expensive,
inefficient energy storage systems and transmis-
sion losses upstream to the grid. By more immedi-
ately utilizing this excess energy, these losses are
minimized and equal or lower energy costs can
be achieved with potentially fewer distributed re-
newable resources, creating savings in the installa-
tion, maintenance, and operating costs associated
with them.

In this paper, we present a strategy to inte-
grate DSM and economic dispatch for renewables
in a localized setting. In our strategy, user pref-
erences and generation capacity are encoded as
constraints of the system. With these constraints,
an optimization objective function is constructed
from the cost of generation for each unit for each
hour. Afterwards, a genetic algorithm is used to
find the optimal solution for the problem. Our
results show that this integrated methodology
is up to 15 % more cost-effective than state-
of-the-art independent DSM and economic dis-
patch models for a neighborhood as compared to
our combined DSM and economic dispatch im-
plementation for an integrated neighborhood
approach (Gudi et al. 2011).

Our study is focused on the abstraction of
houses, renewable energy resources (RES), and

devices and their average generation and con-
sumption similar to the works of Shivakumar et al.
(2013), Livengood and Larson (2009), Ranade and
Beal (2010), and Conejo et al. (2010). Study of
integration of power flows in the micro-grid and
integration of different energy sources for a robust
power delivery is the next step of deploying this
system but is beyond the scope of the current
work.

The remaining sections of the paper are orga-
nized as follows: In “Economic dispatch and DSM
opportunities in smart grids,” we discuss the op-
portunities for economic dispatch and DSM that
have emerged through research in smart grids
and micro-grids. In “Operational system,” the
operation system is discussed and in “Problem
formulation,” the problem present in this opera-
tional system is modeled and design objectives
are discussed. In “Genetic algorithm,” the ge-
netic algorithm formulation and its algorithm is
discussed. “Model implementation” specifies im-
plementation details for the various steps for the
genetic algorithm, and finally, in “Evaluations and
results,” evaluation of the numerical results and a
summary of the findings are presented.

Economic dispatch and DSM opportunities
in smart grids

There are two developments in recent times which
have provided new opportunities for economic
dispatch and DSM. On one hand, smart grid ini-
tiatives have provided greater surgical control of
user-side power consumption (Coll-Mayor et al.
2007; Farhangi 2010; Ipakchi and Albuyeh 2009).
This is being used as an opportunity by various
researchers to define fine-grained DSM (Conejo
et al. 2010; Gudi et al. 2011; Livengood and
Larson 2009; Ranade and Beal 2010) as opposed
to the blanket DSM employed in traditional grids
(Amjady 2007; Gellings and Chamberlin 1993;
Shahidehpour et al. 2002; Weron 2006). On the
other hand, distributed generation and renewable
sources have enabled the emergence of micro-
grids within which more efficient and exact eco-
nomic dispatches are possible (Jiayi et al. 2008;
Lasseter et al. 2002; Tsikalakis and Hatziargyriou
2008; Yalcinoz et al. 2001).
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Demand-side management programs in tradi-
tional grids usually involved manual control of
end user devices (Gellings and Chamberlin 1993).
Automation is proposed by some authors, but the
control was blanket in the sense that the par-
ticipating devices were either switched on or off
(Albadi and El-Saadany 2007). There is no con-
cept of intelligent planning for the operation of
these devices.

Fine-grained DSM strategies, on the other
hand, can perform complicated automated device
scheduling based on consumer preferences and
electricity prices. Furthermore, with the advent
of more dynamic forms of pricing, they have be-
come increasingly flexible in order to adjust for
fluctuations in the cost of electricity. These DSM
techniques usually manage energy within a sin-
gle household and typically involve capitalizing
on variable pricing by energy providers and in-
tegration of house-based renewables for cheaper
energy utilization. Several papers have already
been published which relate to such techniques.
An example is the work presented by Livengood
and Larson (2009) which uses a stochastic pro-
gramming solution to optimize user-side demand.
However, the approach focuses on optimizing
for a single household at the granularity of in-
dividual consumer devices. On the other end of
the spectrum is the probabilistic demand shaping
and peak-shaving approach outlined by Ranade
and Beal (2010) which concerns itself with reduc-
ing demand by multiple consumers during peak
hours but does not focus on actual scheduling of
activities.

Economic dispatch in the scope of micro-grids
has also generated a fair amount of interest. The
main contention here has been to incorporate
renewables (Jiayi et al. 2008). While Celli and
colleagues have proposed methods to use micro-
grid economic dispatches to maximize benefit in
integration with the rest of the grid, Tsikalakis
suggests a system where intelligent controllers
at consumer level collaborate with a micro-grid
central controller (Tsikalakis and Hatziargyriou
2008). In this case, the central controller is respon-
sible for dispatch whereas local controllers are re-
sponsible for DSM (Tsikalakis and Hatziargyriou
2008). In addition to these solutions, Lasseter and
colleagues have also designed a framework for

economic dispatch in micro-grids (Lasseter et al.
2002). A genetic algorithm-based approach by
Yalcinoz and colleagues can also be found in the
current literature (Yalcinoz et al. 2001). However,
all of these systems cater to economic dispatch
independent of DSM.

Recently, a series of researchers have de-
veloped economic dispatch solution incorporat-
ing the demand response saving. For instance,
Behrangrad et al. presented an economic dispatch
model which uses the demand response as spin-
ning reserve (Behrangrad et al. 2011). Parvania
and Firuzabad presented an economic dispatch
model which used the demand response planners
(DRPs) as an integral part of grid and mod-
eled the saving realized by DRPs in planning
optimal economic dispatch (Parvania and Fotuhi-
Firuzabad 2010). However, in both the instances,
economic dispatch does not actually plan house-
hold consumption in the same way as Conejo et al.
(2010), Livengood and Larson (2009), or Ranade
and Beal (2010) do.

As demonstrated later in our experiments,
treating DSM and economic dispatch as indepen-
dent modules can result in suboptimal power pric-
ing across the grid. Instead, in this paper, we com-
bine fine-grained DSM with economic dispatch of
micro-grids and attempt to find an optimal sched-
ule for both under a single optimization model.
This way we are able to leverage the power of
DSM to arrive at better power dispatches, result-
ing in a lower cost than independent DSM and
economic dispatch systems.

We specifically consider the micro-grid devel-
oped within the EU R&D MG project and pre-
sented by Jiayi et al. in their survey (Jiayi et al.
2008). In this micro-grid is a hierarchical structure
where a micro-grid controller (MGCC) acts as a
broker between load controllers (LC) and micro-
sources (MS). In the survey, it has been shown
that LC and MS are two independent entities
and optimize their operations independently. We
show that a combined model at MGCC level, at
least for the renewable MS, provides a better op-
timization than independent LC andMS planning.

This is under the assumption that micro-grid
implements an economic operational cycle similar
to that in the work of Dimeas and Hatziargyriou
(2005). In this setup, MGCC announces the
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beginning of market period and MS and LC pre-
dict their production and demand, respectively,
and bid for the resources under MGCC. MGCC
then resolves the market using some algorithm.
When we consider DSM within this setup, we
see a point of combined optimization for MS
and LC.

To our knowledge, such solutions for micro-
grids are rare. Approaches that attempt to bring
together both sides of this relationship are limited
in their scope. For example, the linear program-
ming optimization solution utilized by Conejo
and colleagues is only applicable to a single-load,
single-supplier scenario (Conejo et al. 2010). Sim-
ilarly, the particle swarm optimization of Wang
and colleagues handles multiple sources but is
designed to function on the scale of single-facility
micro-grids only (Gudi et al. 2011). A need exists
for a more holistic approach that can encom-
pass both these aspects of energy management
while accommodating multiplicity of suppliers and
consumers.

In this paper, we satisfy this need by present-
ing a genetic algorithm-based solution for com-
bined power dispatch and DSM for residential
users in a micro-grid. Our proposed strategy has a
bottom–up approach where individual consumers
in the micro-grid communicate their power re-
quirements as a set of constraints over a neigh-
borhood area network to the local micro-grid.
The energy management system (EMS) of the
micro-grid then collates this information and uses
it in conjunction with information from available
power supplies to generate an optimum power
distribution schedule. This schedule satisfies the
maximum number of consumer constraints at the
lowest possible total cost to all the consumers.
It is important to note that while this algorithm
can be applied on an individual consumer level,
the primary focus is to optimize across multi-
ple small-scale consumers located within a single
micro-grid.

An important question within the scope of re-
newable integration is their intermittency. It has
already been established that integration of MS
in micro-grid and for RES requires an interme-
diate storage. However, the sizing of battery is
problematic and adds cost to the system. In this
paper, we assume that a storage of sufficient size is

available to mitigate the response time of MS and
intermittency of RES. However, unlike other DR
systems (Gudi et al. 2011; Livengood and Larson
2009), we do not consider this storage as an active
source in our planning. The storage is placed as
a backup measure to safeguard against failures.
Using this storage for any purpose can place our
system in a compromised state which we would
like to avoid under any circumstance. Further-
more, for our optimization, we only consider the
hourly average wind speed and solar irradiance.
This, in conjunction with the storage, provides us
with sufficient buffer to plan DR. This treatment
of renewable is consistent with similar works in
the literature (Gudi et al. 2011; Livengood and
Larson 2009).

To test the feasibility of our approach versus
existing solutions, we have benchmarked it on two
levels. At the first level, we construct a power
dispatch and DSM system for a single house and
compare it with a state-of-the-art energy man-
agement system (Gudi et al. 2011) at the same
scale. Our results show that our genetic algorithm-
based solution is up to 10 % more effective. We
then extrapolate to multiple houses that would
be present in a micro-grid and show that our
technique is able to utilize the combination of
DSM and economic dispatch to deliver higher
savings than DSM and economic dispatch systems
working independently. In this way, our contri-
bution is unique that it brings the best of these
two strategies together and forms a succinct so-
lution for energy management at the level of a
micro-grid.

Operational system

In this section, we discuss the operational sys-
tem for which our technique is designed. Our
proposed strategy is for a micro-grid setup with
variety of micro-generation and renewable energy
resources. Houses have some home area network
or smart devices setup which can monitor and
control energy consumption.

The planning module operates on a 24-h plan-
ning horizon for its scheduling. It is assumed that
pricing and availability details of energy supplies
are known 24 h in advance due to day-ahead pric-
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ing. It is also assumed that consumption schedules
for the consumers are available. These schedules
are in the form of demand of energy in each hour
and the elasticity bounds for movable loads.

The proposed algorithm can readily be imple-
mented in the EMS of any micro-grid network.
Moreover, it possesses the required speed and
scalability to enable its practical use in such a case,
as demonstrated later in the paper with the help of
experiments.

Problem formulation

The objective of this approach is to determine an
effective distribution of sources of energy between
the multiple consumers in a micro-grid such that
the total cost across all consumers is minimized
and all consumer-specified and design constraints
are satisfied. Specifically, we consider a daily 24-h
time window and must generate a mapping of
consumers to suppliers at the resolution of hourly
intervals for certain amounts of power.

The objective function selected for be mini-
mized is defined below:

∑

x∈C

∑

y∈S
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Constraints in Eqs. 2 and 3 define the op-
erational limits of the intended system, which
should be satisfied throughout system operation
for any feasible solution. Constraint in Eq. 2 stip-
ulates that the load assigned to different houses
should be equal to the total system demand. This
does not limit generation but limits the assign-
ment of that generation to demands. Constraint in
Eq. 3 stipulate that for each hour and for each

generation unit, the energy dispatch from that
unit should be less than or equal to its projected
generation. Each of these <supplier,hour> tuples
is evaluated as a Boolean. The sum of the contra-
positive of the previous statement is used as the
constraint. That is, we evaluate that generation is
lesser than dispatch. The constraint is that for all
the <supplier,hour> tuple, this statement should
be false. This contrapositive is helpful in making a
generic statement since otherwise the right-hand
side of the equation will be equal to the number of
suppliers × hours in planning window. These two
equations in combination ensure that the energy
supplied does not surpass energy demand and
does not exceed what suppliers can provide in
given intervals, respectively. Solutions that violate
these constraints cannot be considered valid.

Constraint in Eq. 4 defines the consumer-
specified constraints which individual consumers
over the micro-grid communicate to the micro-
grid EMS. These constraints help ensure that any
solution meets consumer requirements by allow-
ing consumers to specify how much power they
need within a certain time interval. The time
interval can be rigid (consumer 5 must receive
5,000 kWh between 3:00 p.m. and 4:00 p.m.) or
flexible to allow for cost savings via scheduling
(consumer 6must receive 10,000 kWh through any
2 h between 12:00 a.m. and 5:00 a.m. in chunks
of 5,000 kWh). Solutions that violate only Eq. 2
can theoretically be considered valid—subject to
a penalty function as described by Michalewicz
(1995) that penalizes based on how many con-
straints were violated and by what margin—but
for the purposes of this work, we attempt to en-
sure that every consumer constraint is satisfied if
supply allows for it—which, in many ways, is a
harder problem. Consumers must be motivated to
opt into DSM schemes and fulfilling their require-
ments as far as possible plays an essential role in
this function.

Genetic algorithm

Genetic algorithms are a particular class of evo-
lutionary algorithms that are based on evolution-
ary processes, such as reproduction, crossover,
and mutation. An initial population of strings
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(chromosomes), which encode possible solutions
(phenotypes) to an optimization problem, evolves
toward better solutions. The evolution starts from
a population of randomly generated chromo-
somes and happens across a prespecified number
of generations. For every generation, the fitness
of all chromosomes in the population is calculated
using the objective function. Multiple chromo-
somes are stochastically selected from the current
population (based on fitness to some degree) to
form the gene-pool for the next population. The
next population is populated using a combination
of the very best solutions from the previous gen-
eration (elitism) and modified chromosomes from
the gene pool (cross-over and possibly randomly
mutated). The new population is then used in
the next iteration of the algorithm. In this way,
fitter solutions have a higher probability of being
reproduced in the next generation and mutation
and crossover help avoid falling into the trap of
local minima of results by ensuring that the chro-
mosomes do not become too similar.

The computational procedure used in the ap-
proach is laid out as follows:

Algorithm 1 DSM–economic dispatch planner
Step 1: Input supplier, consumer, and consumer

constraint tuples and specify genera-
tion shift factors: population size, num-
ber of generations, mutation probability,
elitism percentage, and tournament size.

Step 2: Pseudo-randomly generate the initial
population.

Step 3: Rank chromosomes using the fitness
function described in Weron (2006).

Step 4: Apply elitism by reserving slots in the
next generation for the highest scoring
chromosomes of the current generation.

Step 5: Build gene pool for the next generation
by the Tournament Selection scheme.

Step 6: Apply Crossover and Mutation opera-
tors on gene pool members to repopulate
the next generation.

Step 7: Repeat steps 3–6 until some terminating
generation number is reached or time
limit is exceeded.

Step 8: Output the fittest chromosome as the
proposed optimum solution.

Model implementation

In this section, we will discuss the details of each
step of our genetic algorithm implementation. We
will discuss steps 1 to 6 since steps 7 and 8 are
trivial.

Input representation

Generation shift factors are specified as simple
real number values. Supplier information is mod-
eled as a 3-tuple which holds the supplier iden-
tifier, energy retail price, and a list of how much
kilowatts of energy is available for each hour of
the 24-h window in question. Consumer informa-
tion is modeled as a simple 2-tuple that contains
the consumer identifier and total energy required.
Similarly, consumer constraints are modeled as a
5-tuple holding a consumer identifier representing
whom the constraint applies to, the amount of
energy to be delivered, and the range of hours
it must be delivered in. The fifth field denotes
the basic quantity of energy the algorithm should
allocate when handling the constraint. It makes
no sense to allocate 9 kWh in 1 h and 1 kWh in
the next if the constraint was built to model the
functioning of a pair of appliances that required
5 kWh each and could be scheduled in separate
hours or together. Specifying 5 in this field would
ensure that only useful allocations are made.

Phenotype representation

A fundamental aspect of genetic algorithms
(GAs) is the encoding of solutions appearing in
the population. This encoding, along with the as-
sociated decoding to return to the natural problem
space, is essential to the GA operations. Each
phenotype consists of a set of elements called
genes that are 4-tuples holding the consumer iden-
tifier, the supplier identifier, the energy allocated,
and the hour in question (1–24). When encoded
as a chromosome, each of these fields is repre-
sented as a real number. While binary encoding is
traditionally the most common method, we have
utilized the real-valued representation scheme
for the benefits it offers in numerical function
optimization (Gomez-Villalva and Ramos 2003;
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Philpott and Pettersen 2006). Using real-number
encoding increases the efficiency of the GA since
conversion of the chromosomes to binary is no
longer needed, avoids loss in precision due to
discretization to binary, requires less memory as
it relies on the computer’s internal floating-point
architecture, and offers the choice to use a greater
variety of genetic operators (Borenstein 2005).

Generating the initial population

One open problem faced by evolutionary algo-
rithms that handle constraints for numerical opti-
mization problems such as this one is that of build-
ing an initial population of chromosomes that is
actually feasible at all. When the fitness function is
complex and noncontinuous in combination with
a search space that is relatively large, GAs can
struggle. This is the case here where a solution
must always fulfill Eqs. 2 and 3 to be valid at all
and must fulfill Eq. 4 in order to maintain the
quality of service threshold at acceptable levels
for consumers. The cardinality of these consumer-
specified constraints can reach over 200 for a rela-
tively large micro-grid. Every consumer has fixed
but different minimum consumption for every
hour of the day along with variable energy re-
quirements that lie within specific time intervals.
Generating even a single solution randomly that
is capable of satisfying each of these constraints
can be time-prohibitive.

To overcome this challenge, our approach uses
a pseudo-random technique that ensures user-
specified constraints are satisfied while generating
an initial population of size N:

Algorithm 2 Population generation
Step 1: Select the first constraint from the list of

user-specified constraints.
Step 2: Randomly select an hour from within the

time range given in the constraint.
Step 3: Pick a supplier by filtering for the set

of suppliers that are selling energy at
that hour and randomly selecting one of
them.

Step 4: Determine how much power to allocate
by randomly picking a multiple of the
basic quantity of energy defined in the
constraint (See section A) up to the total

energy required. However, if the basic
quantity exceeds the total energy re-
quired, randomly pick a value from 1 up
to the total energy required.

Step 5: Consider the selected hour, supplier, and
power to allocate—along with the con-
sumer identifier from the constraint—as
a gene and append it to the chromosome.

Step 6: If the total energy required by the con-
straint has not been satisfied, update this
quantity by subtracting the power allo-
cated in step 4 and repeat from step 2.

Step 7: Pick the next constraint and repeat from
step 2 until all constraints have been
satisfied.

This ensures that any generated solution sat-
isfies Eqs. 2 and 4. Additional energy required
by the consumer that was not covered by any
constraint is then handled by generating genes re-
peatedly through a completely random procedure
until all requirements have been met. Solutions
generated in this fashion can still violate Eq. 3
since overallocation on a particular supplier can
occur so checks should be evaluating the fitness of
a solution.

Elitism

A fraction of the fittest chromosomes Ne are guar-
anteed a place in the next generation directly with-
out any mutation or crossover operators applied.
This helps ensure that if an optimum chromosome
is found, it remains a competitive candidate. Note
that these elitist chromosomes in the original pop-
ulation are also eligible for selection and subse-
quent recombination in the gene pool.

Selection scheme

After elitism has been applied, a subset of the
N chromosomes is selected to be used as parents
for the succeeding generation. It is essential that
priority is not monopolized by chromosomes with
the highest fitness values since this tends to re-
duce the diversity, often causing premature con-
vergence in a local optimum. To avoid this, our
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approach uses tournament selection. Chromo-
somes are inducted into (N − Ne) “tournaments”
by random sampling (with replacement) from the
original population. The winner of each of these
tournaments (the one with the best fitness) is
placed in the gene pool as a parent for the next
generation of chromosomes. Stronger chromo-
somes can enter the pool multiple times, but by
keeping the tournament size small, weaker chro-
mosomes have a reasonable chance to be selected
as well (Holland and Mansur 2006).

Reproduction scheme

The (N − Ne) parent chromosome entries from
the gene pool are paired together to help breed
the (N − Ne) new chromosomes needed to repop-
ulate the next generation. Pairs are subjected to a
crossover operator with a prespecified probability
which produces two offspring. If the crossover
operator is not applied, the offspring will be di-
rect clones of the parents. Since a given popula-
tion might not contain enough diversity to find
the solution via crossover operations alone, the
algorithm also uses a mutation operator on any
given offspring with a prespecified probability in
an attempt to generate novel solutions. Details on
these two operators are given below:

1. Crossover operator: If crossover does take
place, then the two offspring are produced

according to an interchange of parts of the
chromosome structure of the two parents. We
accomplish this by one-point crossover, where
the numbers appearing after a randomly cho-
sen dividing (splice) point in the genes of the
two chromosomes are interchanged.

2. Mutation operator: For a chromosome sub-
ject to mutation, we take a randomly chosen
subset of its genes. For each of these genes,
mutation is accomplished by adding a small in-
dependent normal to the hour at which power
was to be supplied and switching the supplier
identifier to another randomly selected valid
value.

Evaluations and results

Experimental setup

In this section, we describe the set of experiments
designed to evaluate the feasibility of our ap-
proach. Figure 1 shows the flow of data in the sys-
tem. There are two input providers to the system.
The suppliers provide their day-ahead approxi-
mate availability and costs. The consumer’s smart
home system provides the planner with consump-
tion constraints according to user’s preferences.
The GA optimizer keeping the constraints and
cost in view creates a consumption schedule for

Consumers Suppliers

GA Optimizer

Consumption 
requirements /

constraints

Day-ahead 
availability 

& costs

Consumption 
schedule

Supply 
schedule

Fig. 1 Flow of data in economic dispatch–DSM system.
The suppliers will provide their day-ahead approximate
availability and costs. The consumer smart home system
will provide the system with consumption constraints. The

genetic algorithm will in return provide a plan to house-
holds to consume energy and will provide plans to genera-
tors for optimal dispatch
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Fig. 2 Unit commit for
renewables: Solid line
with triangle markers
represents the daily cost
of power when X sets or
renewables are installed
in combined
configuration. Dashed
line represents the cost of
10 renewables in
distributed controller
configuration

the consumers and a dispatch schedule for the
generating units (Fig. 2).

The GA optimization engine is set up with
the following parameters: We set up our genetic
algorithm with a population size of 1,000 across
100 generations with a tournament size of 3,
and elitism, mutation, and crossover probabilities
were set at 0.02, 0.05, and 0.5, respectively. The
choice of these parameters was guided by Gomez-
Villalva and Ramos (2003).

The daily cost rates for consumption of electric-
ity used in both experiments are part of a cost rate
structure plan obtained from Gudi et al. (2011)
and shown in Table 1.

For renewable sources of energy, we utilize
the wind turbines and photovoltaic cell. The
specifications for these sources were also acquired
from Gudi et al. (2011) and set as follows:

Photovoltaic cell: Area 20 m2

Efficiency 12.5 %
Wind turbine: Rotor diameter 4.75 m

VC 2 m/s
VR 8 m/s
VF 25 m/s
Turbine efficiency 35 %

Table 1 Energy rates for experiment (Gudi et al. 2011)

Time Cost (cents/kWh)

7 a.m. to 9 a.m. 0.45
9 a.m. to 4 p.m. 0.30
4 p.m. to 6 p.m. 0.37
6 p.m. to 10 p.m. 0.45
10 p.m. to 7 a.m. 0.30

The wind speed and solar radiation data
utilized during evaluations are delineated in
Tables 2 and 3. This information was obtained
from Lasseter and Paigi (2004) and Zareipour
et al. (2004), respectively, and mirrors the values
used in the case study outlined by Gudi et al.
(2011). All the experiments were run on a com-
modity computer with core i5 processor and 8 GB
of memory.

Experiment 1: single-house distributed
configuration benchmarking

To evaluate the feasibility of our approach ver-
sus existing solutions, we benchmarked our GA
against the state-of-the-art energy management
solution presented in the study by Gudi et al.
(2011).

The case study therein incorporates distributed
renewable resources and utilizes detailed con-
sumption information of sample household appli-
ances to output a consumption schedule that min-
imizes total cost to the micro-grid. The properties
(number of appliances, time of operation, power
consumption, and priority) of the appliances were
set as shown in Table 4. It should be noted that ap-
pliances with multiple-duty-cycle operation have
variation in their peak power consumption. The
goal of the DSM is to reduce the cost of energy
and is constrained by the practical consideration
that all the operations for the devices must be
completed within the planning window. The se-
lection of device is according to the priorities
set by the user. This is the experimental setup
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Table 2 Solar insolation
values

Hour of day 1 2 3 4 5 6 7 8
Insolation (W/m2) 0 0 0 0 0 0 56 214
Production (W) 0 0 0 0 0 0 1.4 5
Hour of day 9 10 11 12 13 14 15 16
Insolation (W/m2) 346 703 955 1,044 989 949 899 789
Production (W) 9 18 23 26 25 27 22 20
Hour of day 17 18 19 20 21 22 23 24
Insolation (W/m2) 581 352 73 0 0 0 0 0
Production (W) 15 8 2 0 0 0 0 0

of Gudi and colleagues and is consistent with
the experimental setup designed by Livengood
and Larson (2009) and Ranade and Beal (2010).
We see possible improvements in this scheme;
however, we would first like to present compar-
ison with the existing work to benchmark our
results.

Based on the cost rate plan defined in Table 1,
the results for optimal DSM planning using Gudi
et al. (2011) and our genetic algorithm imple-
mentation are shown in Table 5. There are three
results for comparison. First is the base system
without DSM, and the second is when DSM is
applied but without any renewable resources. The
third result is the savings of application of DSM
using renewable sources. The percent cost savings
for direct operation with renewable resource inte-
gration is 10.39 %.

Results

The results for operation with renewable re-
sources are competitive but not immediately com-
parable directly since our results do not account
for the use of a 100 % efficient energy storage
system that begins with 40% state of charge at the
onset of simulations in the study by Vittal (2010).
We opt out of using such energy storage systems
in active DSM planning in favor of sharing excess

energy production from on-site renewable sources
across multiple consumer loads in the micro-grid
as will be shown in experiment 2. In this way,
we maximize the use of these resources during
off-peak hours and create savings by overcoming
energy losses to storage inefficiencies and mini-
mizing the installation and operational costs asso-
ciated with batteries and energy transformations.

Experiment 2: distributed controller
configuration versus combined controller
configuration

Having established the feasibility of our algorithm
with respect to alternate solutions at a single-
consumer level, we extended the scale to simulate
a multiple-facility micro-grid. For this, we used
energy consumption data collected from 10 houses
(Table 6). Due to privacy requirements, we added
a small amount of random noise in the data while
making sure that the characteristics of the data are
not affected. Our comparison is between a DSM
in a distributed controller configuration where
each house has its own DSM planner against a
DSM where loads of each house are combined
into a single system. This single system acts as
the planner combining the energy produced and
the devices available for scheduling. The goal is to
maximize the renewable energy usage across the

Table 3 Hourly average
wind speeds

Hour of day 1 2 3 4 5 6 7 8
Wind speed (kmph) 45.2 16.8 5.9 34.4 20.7 27.2 36.8 12.2
Production (W) 0 831.25 325.53 0 831.25 0 0 831.25
Hour of day 9 10 11 12 13 14 15 16
Wind speed (kmph) 6.5 37.6 3 31.6 19.7 44.2 11.3 11.4
Production (W) 439.74 0 31.33 0 831.25 0 831.25 831.25
Hour of day 17 18 19 20 21 22 23 24
Wind speed (kmph) 13.7 27.6 34.9 20.9 31.1 3.24 35.1 2
Production (W) 831.25 0 0 831.25 0 42.90 0 0
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Table 4 Usage
consumption pattern of
the user

Appliance name Time of Time of operation No. of Consumption Priority
operation without DSM appliances (W)

3,500
Air conditioner Full day Full day 3 2,500 2

1,500
Clothes dryer 120 min 9 p.m.–11 p.m. 1 650 6
Dishwasher 180 min 9 a.m.–10 a.m. 1,200 4

9 p.m.–11 p.m. 1 1,200
800

Refrigerator Full day Full day 2 600 1
450

Pool pump 240 min 4 p.m.–8 p.m. 1 2,000 7
Washing machine 60 min 8 p.m.–9 p.m. 1 800 5

6 a.m.–11 a.m. 700
Water heater Full day* 11 a.m.–6 p.m. 1 500 3

6 p.m.–1 a.m. 700

Table 5 Experimental results: without DSM is the base
system running without any renewables and without apply-
ing any DSM

Scenario Cost (cents/day)
Benchmark Experiment

Without DSM 131 –
With DSM 88.7 80.35
With DSM & 22.5–26.9 23.47
renewable sources

With DSM is a system with a DSM but no renewable.
With DSM and renewable is when houses are fitted with
renewable sources of energy, a DSM is applied to manage
the energy loads

Table 6 Independent run DSM results

House no. Cost (cents/day)

1 20.49966
2 34.80037
3 10.4551
4 20.64298
5 21.05456
6 13.89449
7 39.52733
8 25.22495
9 29.82267
10 12.23465

Total 228.15676

micro-grid and avoid storage or inefficient back
selling.

To conduct this experiment, we executed our
algorithm for each of the houses individually and
added the values to obtain the total cost for the
neighborhood. Table 7 lists the cost of power in
cents per day for each house while each house uses
the DSM strategy of experiment 1. Each house
possesses its own wind turbine and photovoltaic
cell. The specifications for these were the same as
those used in experiment 1. We use this result as
the benchmark and compare it against our com-
bined configuration model.

In the combined model, as compared to the pre-
vious one, the houses could share excess energy
from their renewable resources with each other.
In this way, we leverage the combined energy pro-
duction and larger device management domain to

Table 7 Combined DSM results

Renewable sets Cost (cents/day)

1 519.9168
2 438.0797
3 358.3161
4 278.9873
5 254.5108
6 245.005
7 237.1987
8 227.0373
9 224.8754
10 217.5591
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Fig. 3 Total demand for
10 houses and availability
of renewable over the
24-h period

increase system efficiency. As an illustration of the
outcome, Fig. 3 shows the total demand for 10
houses and the generation through wind and solar
panels.

Results

Our first result compares the total energy cost for
both configurations. Whereas our total cost with
distributed controllers was 228.16 cents per day,
the cost using combined configuration came out
to 217.6. This is a 10.56 cents or 5 % of savings
by using exactly the same devices but a different
controller methodology.

Discussion on unit commit problem

As a side note, we further investigated if we can
solve the unit commit problem with this setup. We
started with no renewables and calculated a plan
by adding one set of renewables in each iteration.
Figure 2 shows a graph of this gradual increase of
renewables in combined configuration against the
total cost of distributed controller configuration.
We consider 10 sets of renewables in distributed
controller configuration since combining power
of more than one renewable set is not possible
in distributed configuration. We see that for the
same demand pattern, seven renewable pairs will
be sufficient to provide energy at the same energy
cost as compared to each house having its own
renewables and controllers. This means that we
can save as much at 30 % of setup cost or save

5 % of operational expenses through a combined
configuration controller.

Conclusion and future work

This paper provides a genetic algorithm to be
integrated into the EMS of a multi-facility micro-
grid. The algorithm offers a scalable means of
minimizing energy costs to the micro-grid’s con-
sumers while meeting their time-based require-
ments. Simultaneously, it assists energy suppliers
by determining the optimum configuration of
generational facilities that must be deployed to
meet the stipulated demand. The interaction takes
place on a daily basis where energy consumption,
user-specified constraints, and supplier day-ahead
pricing information is. A pair of case studies
demonstrates the feasibility and effectiveness of
the proposed algorithm to minimize total cost to
both the suppliers and consumers within a micro-
grid that integrates the proposed procedure in
its EMS.

There are many areas in which the algorithm
might be further improved. Constraint-capturing
mechanisms are one obvious place: where inte-
gration with negotiation algorithms that bridge
the gap between algorithms that operate on the
individual consumer level such as those of the
study by Livengood and Larson (2009) and
the larger multi-facility micro-grid level would
make the overall system more dynamic in the
face of changing consumer behavior. Similarly,
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ensuring fairness to individual consumers could
be handled in a more sophisticated process using
a tiered-pricing schema from individual suppliers
after distributing less-expensive energy resources
evenly. More lenient penalty functions for not
meeting user-specified constraints are possible as
well—with users being better able to prioritize
cost-cutting measures over device usage and vice
versa. Finally, an obvious next step is to deploy
the algorithm on a small multi-facility micro-grid,
validating that it behaves as expected in a real
network environment before moving toward test
deployments with actual consumers.
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